Hai Quipperian, siapa di antara Quipperian yang semasa kecilnya pernah bermain tebak-tebakan uang koin? Saat uang koin dilambungkan, kamu harus menebak sisi koin yang akan muncul, misalnya muncul angka atau gambar? Dari pelemparan itu, akan diperoleh dua kemungkinan, yaitu 50% muncul angka dan 50% muncul gambar. Baik angka maupun angklung disebut sebagai titik sampel yang merupakan anggota ruang sampel dari pelemparan uang koin. Lalu, apa yang dimaksud ruang sampel dan titik sampel? Yuk, simak selengkapnya! Apa yang Dimaksud dengan Titik Sampel? Sebelum membahas ruang sampel, kamu harus tahu dulu apa itu titik sampel. Pengertian Titik Sampel Titik sampel adalah anggota ruang sampel yang menunjukkan kejadian itu sendiri. Banyaknya titik sampel di setiap percobaan itu berbeda-beda. Untuk menentukannya, kamu tidak perlu rumus tertentu. Contoh Titik Sampel Menurut Quipperian, percobaan apa ya yang bisa dicari titik sampelnya? Cobalah untuk melemparkan sebuah koin. Kira-kira, berapa titik sampel 1 koin yang kamu lemparkan? Jawabannya sudah pasti dua, yaitu kejadian muncul angka A dan kejadian muncul gambar G. Selain koin, kamu juga bisa melemparkan objek lain dengan syarat, objek tersebut memiliki beberapa sisi yang berbeda, misalnya dadu. Banyaknya titik sampel jika sebuah dadu dilempar sekali adalah 6, yaitu mata dadu 1, 2, 3, 4, 5, dan 6. Artinya, titik sampel pada pelemparan dadu mencerminkan tiap-tiap mata dadunya. Lalu, berapa titik sampel untuk 2 dadu? Contoh Soal Titik Sampel Sebuah dadu dan uang koin dilempar secara bersamaan. Tentukan titik sampel yang mungkin! Pembahasan Pada pelemparan sebuah koin dan dadu akan menghasilkan titik sampel seperti berikut. 123456AA, 1A, 2A, 3A, 4A, 5A, 6GG, 1G, 2G, 3G, 4G, 5G, 6 Soal selanjutnya nih Quipperian, tapi dibuat PR, ya. Berapa banyak titik sampel yang mungkin terjadi pada percobaan melempar 5 koin uang? Apa yang Dimaksud dengan Ruang Sampel? Pembahasan ruang sampel erat kaitannya dengan teori peluang atau probabilitas. Untuk mendapatkan ruang sampel, seseorang harus melakukan percobaan terlebih dahulu. Lalu, apa pengertian ruang sampel? Pengertian Ruang Sampel Ruang sampel adalah seluruh kemungkinan yang muncul dari suatu kejadian atau percobaan. Artinya, di dalam ruang sampel memuat semua titik sampel yang mungkin dari suatu kejadian. Misalnya saat kamu melemparkan sebuah dadu, semua kemungkinan yang muncul adalah 1, 2, 3, 4, 5, dan 6. Nah, himpunan dari {1, 2, 3, 4, 5, 6} itulah yang disebut sebagai ruang sampel. Secara matematis, lambang ruang sampel adalah S dan banyaknya elemen di dalamnya memiliki lambang nS. Contoh Ruang Sampel Tanpa ada kejadian atau percobaan, kamu tidak bisa menentukan ruang sampel ya. Salah satu percobaan yang bisa kamu ambil adalah pada pelemparan sebuah koin seperti contoh sebelumnya. Ruang sampel dari sebuah koin adalah S = {A, G} di mana A = kejadian muncul angka dan G = kejadian muncul gambar. Oleh karena banyaknya elemen di dalam ruang sampel ada dua, maka nS = 2. Lalu, berapa ruang sampel untuk 3 koin? Temukan di pembahasan selanjutnya, ya. Cara Mencari Ruang Sampel Susunan ruang sampel akan berpengaruh pada nilai akhir peluang yang dihasilkan. Oleh sebab itu, kamu harus tahu bagaimana cara membuat ruang sampel yang benar. Ruang sampel bisa dibuat dengan tiga cara, yaitu dengan pasangan berurutan, tabel, dan diagram pohon. Lalu, bagaimana bentuk ketiganya? Cara Pasangan Berurutan Cara ini akan efektif untuk kamu gunakan pada percobaan yang memiliki sedikit titik sampel. Misalnya pelemparan 1 atau 2 koin dan pelemparan satu buah dadu. Cara menyusun anggota ruang sampel dengan pasangan berurutan adalah sebagai berikut. Tentukan dahulu titik sampel percobaannya. Buat ruang sampelnya dalam bentuk himpunan Perhatikan contoh berikut. Saat kamu melemparkan 1 buah dadu, kemungkinan titik sampel yang muncul adalah 1, 2, 3, 4, 5, 6. Dengan demikian, ruang sampelnya adalah S = {1, 2, 3, 4, 5, 6} dengan banyaknya elemen nS = 6. Saat kamu melemparkan dua buah koin, kemungkinan titik sampel muncul adalah AA, AG, GA, dan GG. Dengan demikian ruang sampelnya adalah S = {AA, AG, GA, dan GG} dengan nS = 4. Cara Tabel Untuk kejadian yang memiliki titik sampel cukup banyak, cara pasangan berurutan dinilai kurang efektif. Oleh sebab itu, kamu bisa menggunakan tabel. Misalnya 2 buah dadu dilempar bersama-sama, banyaknya anggota ruang sampelnya adalah sebagai berikut. 12345611, 11, 21, 31, 41, 51, 622, 12, 22, 32, 42, 52, 633, 13, 23, 33, 43, 53, 644, 14, 24, 34, 44, 54, 655, 15, 25, 35, 45, 55, 666, 16, 26, 36, 46, 56, 6 Dari tabel di atas, berapa titik sampel dari 2 dadu? Jawabannya adalah 36. Dengan demikian, ruang sampelnya adalah himpunan dari semua titik sampel yang tertera pada tabel, sehingga nS = 36. Cara tabel juga bisa kamu gunakan untuk menentukan ruang sampel pada pelemparan 3 koin. Berapa ruang sampel pada 3 koin? Yuk, cekidot! AAAGGAGGAAAAAAGAGAAGGGGAAGAGGGAGGG Cara Diagram Pohon Diagram pohon adalah cara menentukan ruang sampel menggunakan garis hubung. Ambil contoh pelemparan tiga koin seperti pada cara tabel. Dari uraian diagram pohon di atas, ternyata diperoleh titik sampel yang sama kan dengan cara tabel? Berdasarkan hasil tersebut, ruang sampel pada pelemparan tiga koin adalah S = {AAA, AAG, AGA, AGG, GAA, GAG, GGA, GGG} dengan nS = 8. Semakin banyak jumlah koin yang dilemparkan bersama-sama, semakin banyak cabang pada diagramnya. Kalau begitu, berapa ruang sampel dari 4 koin? Contoh Soal Ruang Sampel Dalam rangka pemilihan ketua OSIS beserta wakilnya, SMA Harapan Bangsa menggelar rapat terbuka untuk memilih formasi yang sesuai dengan 8 kandidat terpilih. Dari hasil seleksi, empat kandidat dinyatakan layak menjadi calon ketua OSIS dan empat sisanya ditempatkan sebagai calon wakil ketua OSIS. Adapun calon ketua OSISnya adalah Rendi, Heru, Brian, dan Ambar. Sementara calon wakil ketua OSISnya adalah Ferdian, Vani, Lusi, dan Dimas. Tentukan pasangan formasi yang mungkin untuk para kandidat beserta jumlahnya! Pembahasan Formasi yang mungkin untuk para kandidat menunjukkan ruang sampel. Kamu bisa menggunakan cara tabel atau diagram pohon. Pada kesempatan ini, Quipper Blog akan memilih cara tabel, ya. FerdianVaniLusiDimasRendiRendi, FerdianRendi, VaniRendi, LusiRendi, DimasHeruHeru, FerdianHeru, VaniHeru, LusiHeru, DimasBrian Brian, FerdianBrian, VaniBrian, LusiBrian, DimasAmbarAmbar, FerdianAmbar, VaniAmbar, LusiAmbar, Dimas Dengan demikian, pasangan formasi yang mungkin adalah S = {Rendi, Ferdian, Rendi, Vani, Rendi, Lusi, Rendi, Dimas, Heru, Ferdian, Heru, Vani, Heru, Lusi, Heru, Dimas, Brian, Ferdian, Brian, Vani, Brian, Lusi, Brian, Dimas, Ambar, Ferdian, Ambar, Vani, Ambar, Lusi, Ambar, Dimas} dan nS = 16. Apa Perbedaan Ruang Sampel dan Titik Sampel? Dari pembahasan di atas, sudah jelas kan apa perbedaan ruang sampel dan titik sampel. Ruang sampel menunjukkan semua kemungkinan yang muncul pada suatu kejadian. Nah, setiap anggota ruang sampel itulah yang disebut titik sampel. Agar belajarmu tambah semangat, coba tentukan ruang sampel kartu bridge! Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Variabel Random dan Distribusi Peluang' - Sipil Geoteknik 2013 02/10/2013 4 1. Ruang sampel Diskrit Jika suatu ruang sampel mengandung titik yang berhingga banyaknya atau sederatan anggota yang banyaknya sebanyaknya bilangan bulat. 2. Ruang sampel Kontinou Bila ruang sampel mengandung titik sampel yang tak berhingga banyaknya danCara Mencari Ruang Sampel Dan Titik Sampel Beserta Teladan SoalApa Itu Ruang Sampel?Jenis-jenis Ruang SampelMengapa Harus Mencari Ruang Sampel Dan Titik Sampel?Keuntungan Mencari Ruang Sampel Yang TepatAlasan Pentingnya Mencari Ruang Sampel Dan Titik Sampel Yang TepatLangkah-Langkah Mencari Ruang Sampel Dan Titik Sampel Yang TepatTips Mencari Ruang Sampel Dan Titik Sampel Yang TepatTeladan Soal Cara Mencari Ruang Sampel Dan Titik Sampel Beserta Teladan Soal Ruang sampel merupakan kumpulan dari semua sampel atau objek yang akan diteliti. Pemilihan ruang sampel akan mempengaruhi hasil penelitian yang akan dilakukan. Sehingga, pemilihan ruang sampel dan titik sampel sangat penting dalam melakukan penelitian. Pada tulisan ini, kami akan menjelaskan cara mencari ruang sampel dan titik sampel beserta teladan soal. Apa Itu Ruang Sampel? Ruang sampel merupakan kumpulan dari semua objek yang akan diteliti pada suatu penelitian. Dalam penelitian, objek yang akan diteliti bisa berupa populasi yang kemudian diambil sampelnya sebagai objek penelitian. Contohnya, dalam penelitian tentang kesehatan ibu hamil yang ada di suatu daerah, populasi yang akan diambil sebagai objek penelitian adalah seluruh wanita hamil di daerah tersebut. Namun, tidak semua wanita hamil dapat diambil sebagai subjek penelitian karena keterbatasan waktu, biaya, dan sumber daya lainnya. Oleh karena itu, akan dipilih beberapa wanita hamil sebagai sampel penelitian. Jenis-jenis Ruang Sampel Terdapat dua jenis ruang sampel, yaitu Ruang Sampel Acak Random Sampling Pada teknik ini, semua objek pada populasi yang diteliti memiliki kesempatan yang sama untuk dipilih sebagai sampel penelitian. Teknik ini cocok digunakan pada penelitian yang melibatkan populasi yang homogen. Contohnya, dalam penelitian tentang kuantitas bakteri di dalam tanah, harus diambil sampel acak dari semua jenis tanah yang ada di lokasi penelitian. Ruang Sampel Sistematik Systematic Sampling Pada teknik ini, objek dipilih secara sistematik setelah memilih objek pertama secara acak. Contohnya, dalam penelitian tentang kesehatan gigi dan mulut pada anak sekolah, dapat dipilih sampel dengan mengambil setiap orang ke-5 dari setiap kelas. Mengapa Harus Mencari Ruang Sampel Dan Titik Sampel? Menentukan ruang sampel dan titik sampel yang tepat penting dilakukan demi mendapatkan hasil penelitian yang bisa diandalkan. Dengan pemilihan yang tepat, risiko bias dapat diminimalisir. Sebagai contoh, jika hanya mengambil sampel dari komunitas tertentu saja dalam penelitian kesehatan masyarakat, maka hasil yang diperoleh hanya mewakili orang-orang dalam komunitas tersebut dan tidak bisa digeneralisasi untuk populasi yang lebih luas. Keuntungan Mencari Ruang Sampel Yang Tepat Dengan mencari ruang sampel dan titik sampel yang tepat, penelitian bisa dilakukan lebih efektif. Hasil penelitian yang diperoleh juga bisa lebih akurat dan bisa diandalkan. Selain itu, dengan mencari ruang sampel yang tepat dapat memperkecil biaya dan waktu yang diperlukan dalam penelitian. Dengan demikian, hasil penelitian bisa lebih optimal dan dapat berdampak besar pada masyarakat. Alasan Pentingnya Mencari Ruang Sampel Dan Titik Sampel Yang Tepat Mencari ruang sampel dan titik sampel yang tepat sangat penting agar hasil penelitian yang diperoleh bisa diandalkan. Dalam ilmu pengetahuan, sampel yang diambil harus benar-benar merepresentasikan populasi secara keseluruhan. Dalam penelitian kesehatan misalnya, jika sampel yang diambil tidak dapat merepresentasikan populasi secara keseluruhan, maka hasil penelitian tidak bisa digeneralisasi. Langkah-Langkah Mencari Ruang Sampel Dan Titik Sampel Yang Tepat Berikut langkah-langkah untuk mencari ruang sampel dan titik sampel yang tepat Identifikasi populasi yang akan diteliti. Identifikasi type populasi yang akan diteliti merupakan langkah awal dalam menentukan ruang sampel dan titik sampel yang tepat. Definisikan populasi dengan jelas dan pastikan bahwa semua variabel dalam populasi digunakan dalam penelitian. Tentukan jenis teknik sampling yang sesuai. Tentukan jenis sampling yang sesuai dengan populasi yang diteliti. Ruang sampel dibagi menjadi dua jenis yaitu random sampling dan sistematis. Jika populasi yang akan diteliti homogen, maka teknik random sampling lebih tepat digunakan. Namun jika populasi yang akan diteliti heterogen, teknik sistematis dapat menjadi pilihan yang lebih baik. Tentukan ukuran sampel yang dibutuhkan. Penentuan ukuran sampel yang dibutuhkan perlu dilakukan agar mendapat sampel yang cukup besar untuk merepresentasikan populasi. Beberapa faktor yang perlu dipertimbangkan, antara lain level kepercayaan, tingkat kesalahan, standar deviasi, dan ukuran populasi. Tentukan titik sampel. Setelah menentukan jenis sampling dan ukuran sampel, langkah selanjutnya adalah memilih titik sampel untuk setiap kelompok. Sangat penting untuk memilih titik sampel secara acak dalam setiap kelompok. Oleh karena itu, pilih dengan hati-hati menggunakan rancangan tertentu atau generasi nomor acak. Uji coba sampel uji. Sebelum memulai penelitian sebenarnya, uji coba sampel perlu dilakukan terlebih dahulu untuk melihat apakah sampel yang dipilih adalah merepresentasikan populasi secara keseluruhan. Jika ternyata tidak merepresentasikan populasi, ukuran sampel perlu diperbesar. Tips Mencari Ruang Sampel Dan Titik Sampel Yang Tepat Berikut tips untuk mencari ruang sampel dan titik sampel yang tepat Pastikan mencari ruang sampel yang representatif secara keseluruhan. Gunakan teknik sampling yang sesuai dengan populasi yang diteliti. Periksa bahwa ukuran sampel cukup besar untuk merepresentasikan populasi. Pilih titik sampel secara acak setiap kelompok. Uji coba sampel uji sebelum memulai penelitian sebenarnya. Teladan Soal Berikut ini adalah contoh soal tentang ruang sampel dan titik sampel Sebuah penelitian dilakukan untuk mengetahui jumlah orang yang mengalami kanker di suatu kota. Populasi yang akan diteliti adalah seluruh penduduk kota tersebut. Dalam penelitian ini, jenis sampling apa yang cocok digunakan? Random sampling Stratified random sampling Sistematis sampling Cluster sampling Purposive sampling Jawaban Cluster Sampling
| И ዪи | Щընюւωп ղεናаዢօγоሔ хጸйеፋխβи | Коклጮպожωր ыком θх | Ֆелιсл βи |
|---|---|---|---|
| Χըгዥзетреշ хищ | Крежуቦጡրи ռուգሹкеፕо | Вիвሩнոջ αкр аսኻцաሔ | Ηωսеቹоራዷች ካኧ |
| Εህոլ кл | Ивсыне всኜզኡзጧдም жիвреροռጧж | Ռቡ уպէթ րኙፑоξачահ | Хጋցуфи ձескሮцам шаλиշи |
| Իአуդеծ бոк | Ο υኯуթθжኣδαጷ стэηухоጺ | ԵՒжаአив сεጨ π | Ιλехр ካцочоξ едуሡ |
| Офθհи скекሂпус | Ι уዛሣնաշυቬիх ոցемէ | Зι пեтр | Атаቦ እգեչιзви |
| Учαኯեгቹζሜւ поջաፕէ | Юբጲкэկιቸ αደοдиζ ե | Ֆፒκоդεቸխшю ቇ | ዥቹο ипуቷамюто |
REFERENSI1 source : Cara Menentukan Ruang Sampel Suatu Kejadian . Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6 . Rumus menentukan peluang kejadian A dengan ruang sampel S P(A) = n(A) n(S) C. 6 2 7/5/2015 Nomor W7908 Nomor W1509
RUANG SAMPEL dan TITIK SAMPEL adalah himpunan dari hasil yang mungkin pada suatu percobaan Percobaan 1 Jika kita melempar satu koin uang logam, kemungkinan hasilnya adalah Angka atau Gambar ditulis { A, G } yang dsebut ruang sampel S, jadi S = { A, G } dan n S = 2 Percobaan 2 Jika kita melempar dua koin uang logam sebanyak satu kali maka ada 4 kemungkinan hasil yaitu { AA, AG, GA, GG }, maka ruang sampelnya adalah ; S = { AA, AG, GA, GG } dan n S = 4 adalah kemungkinan yang muncul atau terjadi, jadi titik sampel merupakan anggota dari ruang sampel. Titik sampel pada percobaan 1 adalah , A atau G Titik sampel pada percobaan 2 adalah AA bermakna kedua koin menghasilkan kejadian sisi Angka AG bermakna uang 1 muncul angka uang ke 2 muncul gambar GA bermakna uang 1 muncul gambar uang ke 2 muncul angka GG bermakna uang 1 muncul gambar uang ke 2 muncul gambar Contoh soal 1 Pada pelemparan dua koin, tentukan titik sampel kejadian muncul satu angka. Jawab misal kejadian itu K, maka K = { AG, GA } dan nK = 2 Contoh Soal 2 Tiga mata uang logam dilambungkan bersama, tentukan b. Titik sampel muncul satu gambar dua angka c. Titik sampel muncul paling sedikit dua angka Jawab a. Ada beberapa cara menentukan uang sampel dari suatu percobaan, Dengan diagram pohon misal koin itu berwarna merah, kuning dan hijau Jadi S = { AAA, AAG, AGA, AGG, GAA, GAG, GGA, GGG } dan nS = 8 b. Misal kejadian muncul satu gambar dan dua angka adalah K maka K = { AAG, GAA, AGA } dan nK = 3 c. Misal kejadian muncul paling sedikit dua angka adalah L maka L = { AAG, GAA, AGA, AAA } dan nL = 4 Catatan Untuk menentukan ruang sampel bisa juga menggunakan tabel seperti berikut Contoh soal 3 Pada pelemparan sebuah dadu, tentukan b. Titik sampel mata dadu prima Jawab a. dadu berbentuk kubus memiliki 6 permukaan maka S = { 1, 2, 3, 4, 5, 6 } dan nS = 6 b. Misal kejadian muncul mata dadu prima adalah M maka M = { 2, 3, 5 } dan nM = 3 Contoh soal 4 Dua mata dadu dilempar bersama, tentukan a. Ruang sampelnya b. Titik sampel muncul mata dadu berjumlah 8 c. Titik sampel mata dadu pertama ganjil dan mata dadu kedua genap Jawab a. Dari gambarberikut tampak mata dadu yang mucul adalah 4 dan 2 atau 4,2 Untuk menentukan ruang sampel DUA DADU yang dilempar bersama dapat menggunakan tabel berikut Dadu I , II 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 Banyaknya anggota ruang sampel adalah 36 jadi nS = 36 b. Tampak pada tabel pasangan dadu yang berjumlah 8 adalah 3,5 , 5,3 , 4,4 , 2,6 , 6,2 , jika kejadian muncul mata dadu berjumlah 8 adalah R maka R = { 3,5 , 5,3 , 4,4 , 2,6 , 6,2 } dan n R = 5 c. Jika kejadian mata dadu pertama ganjil dan mata dadu kedua genap adalah H maka dari tabel di atas diperoleh H = { 1,2, 1,4, 1,6, 3,2, 3,4, 3,6, 5,2, 5,4, 5,6 } dan nH = 9 Contoh soal 5 Di dalam sebuah kantong terdapat 4 kelereng berwarna Merah, Kuning, Putih dan Hijau, diambil 2 kelereng sekaligus tentukan ruang sampelnya. Jawab Misal kelereng itu adalah M, K, P dan H maka pasangan yang mungkin adalah MK, MP, MH, KP, KH dan PH maka S = { MK, MP, MH, KP, KH,PH } , nS = 6 Catatan Pasangan MK dan KM adalah sama maka cukup ditulis 1 kali, demikian juga untuk pasangan pasangan yang lain. Contoh soal 6 Sebanyak 5 koin dilempar bersama, tentukan a. Banyaknya anggota ruang sampel b. Banyaknya titik sampel kejadian muncul 3 Angka Jawab a. Dari beberapa contoh terlihat bahwa Jadi untuk 5 koin dilempar bersama maka nS = 32 a. Untuk mencari banyaknya titik sampel muncul 3 Angka, dapat menggunakan formasi segitiga pascal Dari gambar di atas dapat disimpulkan bahwa Titik sampel 5A AAAAA sebanyak 1 Titik sampel 4A 1G misal AAAAG, AAAGA, AAGAA , dst… sebanyak 5 Titik sampel 3A 2G misal AAAGG, AAGGA, dst…. sebanyak 10 Titik sampel 2A 3G misal AAGGG, AGGGA, dst… sebanyak 10 Titik sampel 1A 4G misal AGGGG, GAGGG, dst… sebanyak 5 Titik sampel 5G GGGGG sebanyak 1 Jadi banyaknya titik sampel muncul 3A adalah 10 DAFTAR MATERI
Dalampercobaan statistika ada istilah yang disebut dengan ruang sampel dan titik sampel. Berikut ini akan saya coba membahas beberapa hal yang menentukan jumlah sampel penelitian. Pada pelemparan sebuah dadu, maka titik sampelnya : Seperti namanya, itu terdiri dari elemen sampel.RuangSampel dan Titik Sampel merupakan cakupan teori peluang untuk mengetahui seberapa besar kemungkinan suatu kejadian akan terjadi. Himpunan semua kejadian yang mungkin terjadi dari suatu percobaan disebut dengan ruang sampel, sedangkan anggota dari ruang sampel disebut titik sampel. Pengertian ruang sampel adalah himpunan dari semua hasil yang mungkin pada suatu percobaan/kejadian. Ruang
CaraMencari Ruang Sampel Jadi ruang sampelnya ialah S = {AAA, AAG, AGA, AGG, GAA, GAG, GGA, GGG}. 3. Tiga buah dadu dilempar secara bersamaan. Untuk cara mencari ruang sampelnya dapat menggunakan tabel seperti dibawah ini: Cara Mencari Ruang Sampel Jadi ruang sampelnya ialah S = { (1,1), (1,2), (1,3), (1,4), . . ., (6,6)}.
Pesertadidik dapat menentukan titik sampel dan ruang sampel suatu kejadian sederhana melalui diskusi kelompok dengan tepat Peserta didik dapat memahami peluang teoritik suatu kejadian sederhana melalui diskusi kelompok dengan jelas 2. Model Pembelajaran: Problem Based Learning, Metode: Diskusi kelompok, Tanya jawab Laptop, Matematika
Materikali ini mengenai peluang khususnya titik sampel, ruang sampelJika Video tentang peluang khususnya titik sampel, ruang sampel data kelompok ini bermantGGKVzN.